Microwave Measurements of the Liquid Water Content of Atmospheric Aerosols

1974 ◽  
Vol 13 (8) ◽  
pp. 871-879 ◽  
Author(s):  
W. Ho ◽  
G. M. Hidy ◽  
R. M. Govan
1981 ◽  
Vol 12 (3) ◽  
pp. 143-166 ◽  
Author(s):  
W.H. Stiles ◽  
F.T. Ulaby ◽  
A. Rango

Prior microwave measurements of snow water equivalent and liquid water content and conceptualizations of emission and backscattering models are reviewed. The results of an experiment designed to collect simultaneous passive and active microwave data to be used in interpreting and analyzing the sensitivity of the microwave spectrum to changing snowpack properties are reported. Both the scattering coefficient, σ°, and the apparent radiometric temperature, Tap, were found to be sensitive to changes in snow water equivalent and liquid water content. The σ° data exhibit an exponential-like increase with increasing water equivalent, whereas, the Tap data exhibit an exponential-like decrease. For both the active and passive data, the snow water equivalent at which the microwave response begins to saturate decreases as the wavelength decreases. Increasing liquid water in the snowpack causes a decrease in σ° and an increase in the Tap. Diurnal data sets show the greatest σ° and Tap variation in response to snowmelt at 35 and 37 GHz with correspondingly less variation at the lower frequencies. Based on research results to date, immediate formulation of a comprehensive microwave and snow research program is recommended.


Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 647 ◽  
Author(s):  
Carlos Pérez Díaz ◽  
Jonathan Muñoz ◽  
Tarendra Lakhankar ◽  
Reza Khanbilvardi ◽  
Peter Romanov

1981 ◽  
Vol 27 (95) ◽  
pp. 175-178 ◽  
Author(s):  
E. M. Morris

Abstract Field trials show that the liquid-water content of snow can be determined simply and cheaply by a version of Bader’s solution method.


1994 ◽  
Vol 19 ◽  
pp. 92-96 ◽  
Author(s):  
TH. Achammer ◽  
A. Denoth

Broadband measurements of dielectric properties of natural snow samples near or at 0°C are reported. Measurement quantities are: dielectric permittivity, loss factor and complex propagation factor for electromagnetic waves. X-band measurements were made in a cold room in the laboratory; measurements at low and intermediate frequencies were carried out both in the field (Stubai Alps, 3300 m; Hafelekar near Innsbruck, 2100 m) and in the cold room. Results show that in the different frequency ranges the relative effect on snow dielectric properties of the parameters: density, grain-size and shape, liquid water content, shape and distribution of liquid inclusions and content of impurities, varies significantly. In the low-frequency range the influence of grain-size and shape and snow density dominates; in the medium-frequency range liquid water content and density are the dominant parameters. In the microwave X-band the influence of the amount, shape and distribution of liquid inclusions and snow density is more important than that of the remaining parameters.


Author(s):  
Pradyumna Challa ◽  
James Hinebaugh ◽  
A. Bazylak

In this paper, through-plane liquid water distribution is analyzed for two polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs). The experiments were conducted in an ex situ flow field apparatus with 1 mm square channels at two distinct flow rates to mimic water production rates of 0.2 and 1.5 A/cm2 in a PEMFC. Synchrotron radiography, which involves high intensity monochromatic X-ray beams, was used to obtain images with a spatial and temporal resolution of 20–25 μm and 0.9 s, respectively. Freudenberg H2315 I6 exhibited significantly higher amounts of water than Toray TGP-H-090 at the instance of breakthrough, where breakthrough describes the event in which liquid water reaches the flow fields. While Freudenberg H2315 I6 exhibited a significant overall decrease in liquid water content throughout the GDL shortly after breakthrough, Toray TGP-H-090 appeared to retain breakthrough water-levels post-breakthrough. It was also observed that the amount of liquid water content in Toray TGP-H-090 (10%.wt PTFE) decreased significantly when the liquid water injection rate increased from 1 μL/min to 8 μL/min.


2018 ◽  
Vol 45 (17) ◽  
pp. 9323-9330 ◽  
Author(s):  
N. Küchler ◽  
S. Kneifel ◽  
P. Kollias ◽  
U. Löhnert

Sign in / Sign up

Export Citation Format

Share Document